
rustc_codegen_gccrustc_codegen_gcc



A A gccgcc CODEGEN FOR RUST CODEGEN FOR RUST
rustc is based on LLVM.

rustc provides an API for codegen.

rustc can load a codegen dynamic library.

libgccjit can be plugged to rustc via this
mechanism.

merged into the Rust repository.



WHY DO WE NEED THIS?WHY DO WE NEED THIS?
Rust is becoming more and more popular.

Support more architectures.

Rust for Linux.

Embedded programming.

Some projects (Firefox, librsvg) won’t run on
architectures not supported by Rust.



PROGRESS SINCE LAST YEARPROGRESS SINCE LAST YEAR
rustc_codegen_gcc was merged into the rust
repository.

Complete support for global variables.

Support for 128-bit integers (-endianness).

SIMD (stdarch tests).

Bootstrap rustc.



PROGRESS SINCE LAST YEARPROGRESS SINCE LAST YEAR
(CONTINUED)(CONTINUED)

Alignment.

Packed structs.

Inline asm improvements.

Symbol visibility.

Function and variable attributes.

Many intrinsics.

Many crashes at compile-time and at run-time.



PROGRESS SINCE LAST YEARPROGRESS SINCE LAST YEAR
(CONTINUED)(CONTINUED)

UI TESTS IMPROVEMENTSUI TESTS IMPROVEMENTS

Tests Last year This year Delta

Passed 4326 4787 +461

Failed 102 52 -50



PROGRESS SINCE LAST YEARPROGRESS SINCE LAST YEAR
(CONTINUED)(CONTINUED)



SUMMARY OF FAILING UI TESTSSUMMARY OF FAILING UI TESTS
Category Number of failing tests

Simd 19

Allocator 9

LTO 10

Asm 3

Other 11



PROGRESS SINCE LAST YEARPROGRESS SINCE LAST YEAR
(CONTINUED)(CONTINUED)



SIMD PROGRESSSIMD PROGRESS
Feature Completion

target-specific built-ins
support in libgccjit

Done

support for vector
shuffle in libgccjit

Done

LLVM SIMD intrinsics ~99% for x86

Rust SIMD intrinsics ~50%



SIMD TESTS RESULTSIMD TESTS RESULT
test result: FAILED. 4564 passed; 12 failed; 0 ignored; 0 meas



PROGRESS SINCE LAST YEARPROGRESS SINCE LAST YEAR
(CONTINUED)(CONTINUED)

GCC PATCHESGCC PATCHES
Add some reflection functions

Add support for types used by atomic built-ins

Add support for TLS variable

Add support for the link section of global variables

Add support for bitcasts

Add support for register variables



GCC PATCHES (CONTINUED)GCC PATCHES (CONTINUED)
Add support for sized integer types, including 128-
bit integers

Add function to hide stderr logs

Add support for setting the alignment

Support getting the size of a float

Fix bug where unary_op will return an integer type
instead of the correct type

target: Fix asm generation for AVX built-ins when
using -masm=intel



PROGRESS SINCE LAST YEARPROGRESS SINCE LAST YEAR
(CONTINUED)(CONTINUED)

libgccjitlibgccjit 12 FEATURE FLAG 12 FEATURE FLAG



FEATURES IMPLEMENTEDFEATURES IMPLEMENTED
Basic and aggregate types.

Operations, local and global variables, constants,
functions, basic blocks.

Atomics.

Thread-Local Storage.

Inline assembly.

Many intrinsics.

Metadata.



FEATURES IMPLEMENTEDFEATURES IMPLEMENTED
(CONTINUED)(CONTINUED)

Setting optimization level.

Support in GodBolt, the Compiler Explorer.

Packed structs.

Alignment, symbol visibility, attributes.

128-bit integers.

SIMD (x86).



WHAT NEEDS TO BE DONE?WHAT NEEDS TO BE DONE?
Unwinding.

Debug info.

LTO.

Endianness support for non-native 128-bit integers.

Add support for new architectures in libraries
(libc, object, …) and rustc.

SIMD for targets other than x86.



WHAT NEEDS TO BE DONE?WHAT NEEDS TO BE DONE?
(CONTINUED)(CONTINUED)

More function and variable attributes.

GCC constraint code.

Target features (to detect what is supported in an
architecture, like SIMD).

Distribution via rustup.



WHAT COULD BE IMPROVED?WHAT COULD BE IMPROVED?
rustc API:

Rvalue vs lvalue.

Landing pads (unwinding).

Handling of basic blocks.

Function vs value.

AST-based IR vs instruction-based IR:

Example: dereference of pointers.

Separate aggregate operations (structs, arrays).



WHAT COULD BE IMPROVED?WHAT COULD BE IMPROVED?
(CONTINUED)(CONTINUED)

libgccjit:

Types introspection (with attributes).

Compilation time.

Missed optimizations.

Binary size.



DEMO: COMPILING RUST FORDEMO: COMPILING RUST FOR
LINUXLINUX



WHAT’S REQUIRED TO COMPILEWHAT’S REQUIRED TO COMPILE
RUST FOR LINUXRUST FOR LINUX

CPU features detection.

Some compiler flags (-Crelocation-
model=static vs -mcmodel=kernel -fno-
pie).



POTENTIAL ISSUES FOR RUSTPOTENTIAL ISSUES FOR RUST
FOR LINUXFOR LINUX

Different ABI on some platforms.

Backporting to older gcc.

Requires a patched gcc for now.



HOW YOU CAN HELPHOW YOU CAN HELP
rustc_codegen_gcc:

1. Run the tests locally.

2. Choose a test that fails.

3. Investigate why it fails.

4. Fix the problem.

Crates:

object

libc



HOW YOU CAN HELPHOW YOU CAN HELP
(CONTINUED)(CONTINUED)

Test this project:

On new platforms.

To compare the assembly with LLVM.

good first issue



QUESTIONS / DISCUSSIONQUESTIONS / DISCUSSION


